2 00 3 Asymptotic Results for Pressureless Magneto – Hydrodynamics
نویسنده
چکیده
We are interested in the life span and the asymptotic behaviour of the solutions to a system governing the motion of a pressureless gas, submitted to a strong, inhomogeneous magnetic field εB(x), of variable amplitude but fixed direction — this is a first step in the direction of the study of rotating Euler equations. This leads to the study of a multi–dimensional Burgers type system on the velocity field uε, penalized by a rotating term ε −1uε ∧B(x). We prove that the unique, smooth solution of this Burgers system exists on a uniform time interval [0, T ]. We also prove that the phase of oscillation of uε is an order one perturbation of the phase obtained in the case of a pure rotation (with no nonlinear transport term), εB(x)t. Finally going back to the pressureless gas system, we obtain the asymptotics of the density as ε goes to zero. Résultats asymptotiques pour la magnéto-hydrodynamique sans pression Résumé. On s’intéresse au temps d’existence et au comportement asymptotique des solutions d’un système modélisant le mouvement d’un gaz sans pression, soumis à un fort champ magnétique εB(x), d’intensité variable mais de direction fixe — cela étant un premier pas dans la compréhension des équations d’Euler en rotation rapide. Cela conduit à l’étude d’un système de type Burgers multi– dimensionnel sur le champ de vitesse uε, pénalisé par un terme de rotation ε −1uε∧B(x). On démontre que la solution unique régulière de ce système de Burgers existe sur un intervalle de temps uniforme [0, T ]. On montre aussi que la phase d’oscillation de uε est une perturbation au premier ordre de la phase obtenue dans le cas d’une rotation pure (sans terme de transport non linéaire), εB(x)t. Enfin en revenant au système des gaz sans pression, on obtient le comportement asymptotique de la densité quand ε tend vers zéro.
منابع مشابه
ar X iv : a st ro - p h / 07 03 59 3 v 1 2 2 M ar 2 00 7 Towards relativistic simulations of magneto - rotational core collapse
We present a new general relativistic hydrodynamics code specifically designed to study magneto-rotational, relativistic, stellar core collapse. The code is an extension of an existing (and thoroughly tested) hydrodynamics code, which has been applied in the recent past to study relativistic rotational core collapse. It is based on the conformally-flat approximation of Einstein's field equation...
متن کاملAnalysis of Magneto-hydrodynamics Jeffery-Hamel Flow with Nanoparticles by Hermite-Padé Approximation
The combined effects of nanoparticle and magnetic field on the nonlinear Jeffery-Hamel flow are analyzed in the present study. The basic governing equations are solved analytically to nonlinear ordinary differential equation using perturbation method together with a semi-numerical analytical technique called Hermite- Padé approximation. The obtained results are well agreed with that of the Adom...
متن کاملElectro-magneto-hydrodynamics Flows of Burgers' Fluids in Cylindrical Domains with Time Exponential Memory
This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model used in this work is based on a time-nonlocal constitutive equation for s...
متن کاملN ov 2 00 6 Junction Conditions , Resolution of Singularities and Nonlinear Equations of Physics
For large classes of systems of polynomial nonlinear PDEs necessary and sufficient conditions are given for the existence of solutions which are discontinuous across hyper-surfaces. These PDEs contain the Navier-Stokes equations, as well as those of General Relativity and Magneto-Hydrodynamics. There has for longer been an interest in finding junction condition across hyper-surfaces of disconti...
متن کاملMetriplectic framework for dissipative magneto-hydrodynamics
The metriplectic framework, which allows for the formulation of an algebraic structure for dissipative systems, is applied to visco-resistive Magneto-Hydrodynamics (MHD), adapting what had already been done for non-ideal Hydrodynamics (HD). The result is obtained by extending the HD symmetric bracket and free energy to include magnetic eld dynamics and resistive dissipation. The correct equati...
متن کامل